Surrogate regret bounds for bipartite ranking via strongly proper losses

نویسنده

  • Shivani Agarwal
چکیده

The problem of bipartite ranking, where instances are labeled positive or negative and the goal is to learn a scoring function that minimizes the probability of mis-ranking a pair of positive and negative instances (or equivalently, that maximizes the area under the ROC curve), has been widely studied in recent years. A dominant theoretical and algorithmic framework for the problem has been to reduce bipartite ranking to pairwise classification; in particular, it is well known that the bipartite ranking regret can be formulated as a pairwise classification regret, which in turn can be upper bounded using usual regret bounds for classification problems. Recently, Kotlowski et al. (2011) showed regret bounds for bipartite ranking in terms of the regret associated with balanced versions of the standard (non-pairwise) logistic and exponential losses. In this paper, we show that such (nonpairwise) surrogate regret bounds for bipartite ranking can be obtained in terms of a broad class of proper (composite) losses that we term as strongly proper. Our proof technique is much simpler than that of Kotlowski et al. (2011), and relies on properties of proper (composite) losses as elucidated recently by Reid and Williamson (2010, 2011) and others. Our result yields explicit surrogate bounds (with no hidden balancing terms) in terms of a variety of strongly proper losses, including for example logistic, exponential, squared and squared hinge losses as special cases. An important consequence is that standard algorithms minimizing a (non-pairwise) strongly proper loss, such as logistic regression and boosting algorithms (assuming a universal function class and appropriate regularization), are in fact consistent for bipartite ranking; moreover, our results allow us to quantify the bipartite ranking regret in terms of the corresponding surrogate regret. We also obtain tighter surrogate bounds under certain low-noise conditions via a recent result of Clémençon and Robbiano (2011).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surrogate Regret Bounds for the Area Under the ROC Curve via Strongly Proper Losses

The area under the ROC curve (AUC) is a widely used performance measure in machine learning, and has been widely studied in recent years particularly in the context of bipartite ranking. A dominant theoretical and algorithmic framework for AUC optimization/bipartite ranking has been to reduce the problem to pairwise classification; in particular, it is well known that the AUC regret can be form...

متن کامل

Bipartite Ranking through Minimization of Univariate Loss

Minimization of the rank loss or, equivalently, maximization of the AUC in bipartite ranking calls for minimizing the number of disagreements between pairs of instances. Since the complexity of this problem is inherently quadratic in the number of training examples, it is tempting to ask how much is actually lost by minimizing a simple univariate loss function, as done by standard classificatio...

متن کامل

Consistent Multilabel Ranking through Univariate Losses

We consider the problem of rank loss minimization in the setting of multilabel classification, which is usually tackled by means of convex surrogate losses defined on pairs of labels. Very recently, this approach was put into question by a negative result showing that commonly used pairwise surrogate losses, such as exponential and logistic losses, are inconsistent. In this paper, we show a pos...

متن کامل

Calibrated Surrogate Losses for Classification with Label-Dependent Costs

We present surrogate regret bounds for arbitrary surrogate losses in the context of binary classification with label-dependent costs. Such bounds relate a classifier’s risk, assessed with respect to a surrogate loss, to its cost-sensitive classification risk. Two approaches to surrogate regret bounds are developed. The first is a direct generalization of Bartlett et al. [2006], who focus on mar...

متن کامل

Surrogate losses and regret bounds for cost-sensitive classification with example-dependent costs

We study surrogate losses in the context of cost-sensitive classification with exampledependent costs, a problem also known as regression level set estimation. We give sufficient conditions on the surrogate loss for the existence of a surrogate regret bound. Such bounds imply that as the surrogate risk tends to its optimal value, so too does the expected misclassification cost. Our sufficient c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014